sinα sin\alpha :

    sin0=0 sin0 = 0

    sinπ6=12 sin\frac{\pi}{6}=\frac{1}{2}

    sinπ4=22 sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}

    sinπ3=32 sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}

    sinπ2=1 sin\frac{\pi}{2} = 1

    sinπ=0 sin\pi = 0

    sin32π=1 sin\frac{3}{2}\pi = -1

    sin2π=0 sin2\pi = 0


    cosαcos\alpha

    cos0=1 cos0 = 1

    cosπ6=32 cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}

    cosπ4=22 cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}

    cosπ3=12 cos\frac{\pi}{3} = \frac{1}{2}

    cosπ2=0 cos\frac{\pi}{2} = 0

    cosπ=1 cos\pi = -1

    cos32π=0 cos\frac{3}{2}\pi = 0

    cos2π=1 cos2\pi = 1


    tanαtan\alpha

    tan0=0 tan0 = 0

    tanπ6=33 tan\frac{\pi}{6}=\frac{\sqrt{3}}{3}

    tanπ4=1 tan\frac{\pi}{4} = 1

    tanπ3=3 tan\frac{\pi}{3} = \sqrt{3}

    tanπ2= tan\frac{\pi}{2} = \nexists

    tanπ=0 tan\pi = 0

    tan32π= tan\frac{3}{2}\pi = \nexists

    tan2π=0 tan2\pi = 0


    cotαcot\alpha

    cot0= cot0 = \nexists

    cotπ6=3 cot\frac{\pi}{6}=\sqrt{3}

    cotπ4=1 cot\frac{\pi}{4} = 1

    cotπ3=33 cot\frac{\pi}{3} = \frac{\sqrt{3}}{3}

    cotπ2=0 cot\frac{\pi}{2} = 0

    cotπ= cot\pi = \nexists

    cot32π=0 cot\frac{3}{2}\pi = 0

    cot2π= cot2\pi = \nexists