代数式:

(a+bi)+(c+di)=(a+c)+(b+d)i (a+bi) + (c+di) = (a + c) + (b + d)i

(a+bi)(c+di)=(ac)+(bd)i (a+bi) - (c+di) = (a - c) + (b - d)i

(a+bi)(c+di)=(acbd)+(ad+bc)i (a+bi)(c+di) = (ac-bd)+(ad+bc)i

a+bic+di=(a+bi)(cdi)(c+di)(cdi)=ac+bdc2+d2+bcadc2+d2i\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i (c,d 不同时为0)

三角式:

r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] r_1(cos\theta_1 + isin\theta_1) \cdot r_2(cos\theta_2 + isin\theta_2) = r_1r_2[cos(\theta_1+\theta_2) +isin(\theta_1+\theta_2)]

r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)=r1r2[cos(θ1θ2)+isin(θ1θ2)] \frac{r_1(cos\theta_1+isin\theta_1)}{r_2(cos\theta_2+isin\theta_2)} = \frac{r_1}{r_2}[cos(\theta_1 - \theta_2) +isin(\theta_1 - \theta_2)]

[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ) [r(cos\theta + isin\theta)]^n = r^n \cdot (cosn\theta + isinn\theta)

r(cosθ+isinθ)r(cos\theta+isin\theta)nn次方根是:

rn(cosθ+2kπn+isinθ+2kπn)(k=1,2,...,n1) \sqrt[n]{r}(cos\frac{\theta+2k\pi}{n} + isin\frac{\theta+2k\pi}{n}) \quad (k = 1 , 2 ,. . . , n-1)