sinα2=±1−cosα2 sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-cos\alpha}{2}} sin2α=±√21−cosα cosα2=±1+cosα2 cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+cos\alpha}{2}} cos2α=±√21+cosα tanα2=±1−cosα1+cosα=1−cosαsinα=sinα1+cosα tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-cos\alpha}{1+cos\alpha}} = \frac{1-cos\alpha}{sin\alpha} = \frac{sin\alpha}{1+cos\alpha}tan2α=±√1+cosα1−cosα=sinα1−cosα=1+cosαsinα